24 research outputs found

    Multi-modal association learning using spike-timing dependent plasticity (STDP)

    Get PDF
    We propose an associative learning model that can integrate facial images with speech signals to target a subject in a reinforcement learning (RL) paradigm. Through this approach, the rules of learning will involve associating paired stimuli (stimulus–stimulus, i.e., face–speech), which is also known as predictor-choice pairs. Prior to a learning simulation, we extract the features of the biometrics used in the study. For facial features, we experiment by using two approaches: principal component analysis (PCA)-based Eigenfaces and singular value decomposition (SVD). For speech features, we use wavelet packet decomposition (WPD). The experiments show that the PCA-based Eigenfaces feature extraction approach produces better results than SVD. We implement the proposed learning model by using the Spike- Timing-Dependent Plasticity (STDP) algorithm, which depends on the time and rate of pre-post synaptic spikes. The key contribution of our study is the implementation of learning rules via STDP and firing rate in spatiotemporal neural networks based on the Izhikevich spiking model. In our learning, we implement learning for response group association by following the reward-modulated STDP in terms of RL, wherein the firing rate of the response groups determines the reward that will be given. We perform a number of experiments that use existing face samples from the Olivetti Research Laboratory (ORL) dataset, and speech samples from TIDigits. After several experiments and simulations are performed to recognize a subject, the results show that the proposed learning model can associate the predictor (face) with the choice (speech) at optimum performance rates of 77.26% and 82.66% for training and testing, respectively. We also perform learning by using real data, that is, an experiment is conducted on a sample of face–speech data, which have been collected in a manner similar to that of the initial data. The performance results are 79.11% and 77.33% for training and testing, respectively. Based on these results, the proposed learning model can produce high learning performance in terms of combining heterogeneous data (face–speech). This finding opens possibilities to expand RL in the field of biometric authenticatio

    Face-voice association towards multimodal-based authentication using modulated spike-time dependent learning

    Get PDF
    We propose a reward based learning to associate face and voice stimuli. In particular, we implement learning in a spiking neural network paradigm using modulated spike-time dependent plasticity (STDP).The face and voice stimuli are paired with a temporal delay, and the network is trained to associate the paired face-voice with a target response.The learning rule is dependent on a reward policy in which the network is given a positive reward for a correct response to a face-voice stimulus pair, or the network receives a negative reward for an incorrect response. Despite a stochastic environment, the learning result of real images and sound indicates a good performance with 77.33% accuracy.The result demonstrates that a machine can be trained to associate a pair of biometric inputs to a target response

    Effect of Corrugation Angle and Direction on the Performance of Corrugated Steel Plate Shear Walls

    Get PDF
    Corrugated steel plate shear wall (CSPSW) is one of the lateral resistance systems which consists mainly of steel frame (beam and column) with vertical or horizontal corrugated steel plate connected to the frame by weld, bolts or both. This type of steel shear wall characterized by low cost and short construction time with high strength, ductility, initial stiffness and excellent ability to dissipate energy. The aim of this paper is to evaluate the effect of corrugation angle and its direction on the performance of CSPSW under cyclic loading. The Finite element analysis was employed to achieve the research aim. The FE models were validated with experimental data available in the literature. Results reveal that the corrugation angle has a clear influence on initial stiffness, strength, ductility, and energy dissipation of CSPSW. The optimum performance of CSPSW can be obtained with angles of 30o for CSPSW with vertical corrugation and 20o for CSPSW with horizontal corrugation. The use of CSPSW with vertical corrugation provides higher strength, stiffness, and ductility compared to CSPSW with horizontal corrugation. Therefore, it is recommended to use CSPSW with vertical corrugation

    Application of Lock-In Thermography for Detecting Leakage Defects in Historic Masonry Arch Structures

    Get PDF
    Defects in masonry are difficult to detect with the naked eye. Non-destructive testing (NDT) techniques are one such ways to detect defects. One way to detect moisture is by using lock-in Infrared (IR) thermography technology. The main objective of this research is to detect a defect in masonry brick walls using infrared thermography camera. Infrared thermography tests were conducted in the laboratory on several experiments to understand time and temperature relationships. Tests were conducted on a masonry water tank with a known defect spot and were successfully detected from the thermography images. Two active approach methods were conducted: halogen lights and a heat gun. It has been shown that when using the heat-gun it is a quicker method according to the results. All procedures and methods performed in this report could be useful for field studies

    Methods of curing geopolymer concrete: a review

    Get PDF
    Geopolymer concrete is a new approach of concrete production by exclusion of ordinary Portland cement entirely with pozzolanic material. Beside water, concrete is the largest consumed substances, which demand huge portion of Portland cement. During Portland cement manufacturing process, high emission of carbon dioxide (CO2) is produced which results in polluting the surrounding environment. Moreover, a lot of energy is expended during cement production. Based on manufacturing situations, geopolymer concrete displays different behaviors and attributes. This paper succinctly discusses the different methods of curing of geopolymer concrete and figures out the best method of curing. Experimental findings revealed that condition of curing has a good influence on the mechanical properties of geopolymer concrete. Conventionally, ambience temperature curing of geopolymer concrete result in low strength development at an early age, while higher temperature curing results in significant strength improvement. Similarly, extended curing time enhanced the geopolymerisation mechanism and achieved greater strength. However, longer duration of curing at an elevated temperature result in failure of the sample

    Stratigraphic Analysis and Depositional Environment of the Newly Recorded Umm Er Rhadhuma Formation (Paleocene) from the Borehole K.H12/7, South Anah City, Western Iraq

    Get PDF
    The Paleocene benthic foraminiferal zonation of the Umm Er Rhadhuma Formation from the borehole (K.H 12/7), South Anah City (Western Iraq), has been re-studied and re-analyzed precisely based on the large benthic foraminifera (LBF). They are represented by two biozone Rotorbinella hensoni Partial Range Zone, recorded from the Lower and middle parts of the Umm Er Rhadhuma Formation and Lockhartia praehaimei Partial Range Zone determined Uppermost of this unit, and dated to be the Selandian – Thanetian stage. Almost all the biogenic (micro and macro) and non-biogenic constituents, including large benthic foraminifera, Algae, Echinoderm, Bryozoans, Oyster, Gastropod fragments, and peloids, in addition to lithofacies types, indicate that this succession belongs to the Umm Er Rhadhuma Formation. Furthermore, the Paleocene shallowing upwards succession is recognized from seven identified microfacies (MF1 to MF7), which suggests three significant facies associations. A broad inner ramp represents them and is warm shallow open normal marine water (FA1). In contrast, the second facies association represents by the predominated bioclastic sand shoal facies association (FA2) and finally reaches the semi-restricted lagoon facies associations (FA3). The interaction between the local tectonic disturbance along Rutba high and eustatic sea level mainly controls the development of two sequence boundaries of Type-1 (SB1) that occurred respectively at the Cretaceous /Palaeogene K- Pg boundary and Paleocene /Eocene boundary. The Paleocene depositional system starts with major transgression during the Selandian above a sequence boundary of type one (SB.1), that separates the Late Cretaceous (Maastrichtian) successions of the Tayarat Formation from the overlying Paleocene succession with a significant gap, covering the whole Danian age (That is the top of Tectonic Megasequence AP. 9). The predominance of retrogradation staking tract indicated the transgressive system tract during the late Selandian and early Thanetian as a result of an increase in the sea level rise and expanded accommodation space. The highstand system tracts show aggradational and then change to a progradational stacking pattern by the end of the Thanetian and mark significant sea level drawdown with a new sequence boundary of type one between them

    An ultra high frequency 921 mhz array antenna for rfid reader

    Get PDF
    Radio frequency identification (RFID) : agriculture goods,electronic devices, manifold volumes of industrial productsfor position recording, distribution reports and location facilitation An ultra-high frequency, UHF (300 MHz - 3GHz) frequency band RFID reader antenna has proven to be better compared to low frequency, LF (30 KHz – 300 kHz) and high frequency, HF (3 MHz – 300 MHz) frequency bands as it offers excellent read range and reading rate This project aims to develop an efficient high-gain patch antenna array to comply with the Malaysian Standard Frequency set for UHF RFID ranging from 921 MHz to 923 MHz

    Brucella epididymo-orchitis: A single-center experience with a review of the literature

    Get PDF
    Brucella epididymo-orchitis (BEO) is a rare complication of brucellosis. Despite the high incidence of brucellosis in developing countries, few case series on BEO are available. This study focuses on the clinical presentations, diagnosis, and treatment of BEO with a review of the literature. This study included consecutive BEO patients diagnosed and treated at Smart Health Tower between 2021 and 2023. The required data were retrospectively collected from patients' profiles. The BEO diagnosis was established through scrotal Doppler ultrasound in cases with a positive Rose Bengal test and positive IgG and IgM results for brucellosis, in addition to scrotal pain and swelling. This study included 11 cases whose ages ranged from 22 to 55 years. Most of the cases presented with testicular pain (72.7%), followed by fever (63.6%) and arthralgia (63.6%). The right side (54.5%) was slightly more affected than the left side (45.5%). The major abnormal laboratory finding was an elevated C-reactive protein (82%). The treatment was conservative, in which a combination of gentamicin, doxycycline, and rifampicin was administered to the patients for about 6-8 weeks. One case underwent an orchiectomy due to the abscess formation. All the patients responded well to the treatment, with no recurrence. In the Middle East, brucellosis remains a concerning infectious disease. Early diagnosis, aimed at preventing abscess formation and other complications, takes first priority to avoid invasive interventions

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore